Superficial zone cellularity is deficient in mice lacking lubricin: a stereoscopic analysis

نویسندگان

  • Naga Padmini Karamchedu
  • Josef N. Tofte
  • Kimberly A. Waller
  • Ling X. Zhang
  • Tarpit K. Patel
  • Gregory D. Jay
چکیده

BACKGROUND Lubricin, a mucinous glycoprotein secreted by synoviocytes and chondrocytes plays an important role in reducing the coefficient of friction in mammalian joints. Elevated cartilage surface friction is thought to cause chondrocyte loss; however, its quantification and methodological approaches have not been reported. We adapted a stereological method and incorporated vital cell staining to assess cellular loss in superficial and upper intermediate zones in lubricin deficient mouse cartilage. METHODS The femoral condyle cartilage of the intact knees from lubricin wild type (Prg4 (+/+)), heterozygote (Prg4 (+/-)), and knockout (Prg4 (-/-)) mice was imaged using fluorescein diacetate (FDA), propidium iodide (PI), and Hoechst staining, and confocal microscopy. Three dimensional reconstructions of confocal images to a depth of 14 μm were analyzed using Matlab to determine the volume fraction occupied by chondrocytes in cartilage of both medial and lateral femoral condyles. Living chondrocyte volume fraction was defined as FDA stained chondrocyte volume/total volume of superficial + upper intermediate zone. Living and dead (total) chondrocyte volume fraction was defined as FDA + PI stained chondrocyte volume/total volume of superficial + upper intermediate zone. MicroCT provided an orthogonal measure of cartilage thickness. Immunohistology for activated caspase-3 and TUNEL staining were performed to evaluate the presence of apoptotic chondrocytes in Prg4 mutant mice. RESULTS Living chondrocyte volume fraction of the medial femoral condyle was significantly lower in Prg4 (-/-) mice compared to Prg4 (+/+) (p = 0.002) and Prg4 (+/-) (p = 0.002) littermates. There was no significant difference in medial condyle chondrocyte volume fraction between Prg4 (+/+) and Prg4 (+/-) mice (p = 0.82). No significant differences were observed for the chondrocyte volume fraction for the lateral condyle (p > 0.26). Cartilage thickness increased in the medial condyle for Prg4 (-/-) mice compared to Prg4 (+/+) (p = 0.02) and Prg4 (+/-) (p = 0.03) littermates, and the lateral condyle for Prg4 (-/-) mice compared to Prg4 (+/+) (p < 0.0001) and Prg4 (+/-) (p < 0.0001) littermates, indicating that a multi-dimensional increase in cartilage volume did not artifactually lower the chondrocyte volume fraction in the medial condyle. Significantly higher number of caspase-3 positive cells were observed in the superficial and upper intermediate zone cartilage of the medial femoral condyle of Prg4 (-/-) mice compared to Prg4 (+/+) (p = 0.01) and Prg4 (+/-) (p = 0.04) littermates, and the lateral femoral condyle of Prg4 (-/-) mice compared to Prg4 (+/+) (p = 0.02) and Prg4 (+/-) (p = 0.02) littermates. There were no significant differences in TUNEL staining among different Prg4 genotypes in both condyles (p > 0.05 for all comparisons). CONCLUSIONS Increased Caspase-3 activation is observed in Prg4 deficient mice compared to Prg4 sufficient littermates. Absence of Prg4 induces loss of chondrocytes in the superficial and upper intermediate zone of mouse cartilage that is quantifiable by a novel image processing technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intervertebral Disc Apparent Torsional Modulus Is Elevated In Lubricin Knockout Mice

INTRODUCTION: Lubricin, also called superficial zone protein (SZP) or Proteoglycan 4 (PRG4), was first identified as the boundary lubricant in synovial fluid. In diarthrodial joints, lubricin is produced by superficial zone chondrocytes and synovial lining cells. It is present in the superficial layer of articular cartilage and coats the articular surface, decreasing surface friction. Lubricin ...

متن کامل

The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth.

The long-term integrity of an articulating joint is dependent upon the nourishment of its cartilage component and the protection of the cartilage surface from friction-induced wear. Loss-of-function mutations in lubricin (a secreted glycoprotein encoded by the gene PRG4) cause the human autosomal recessive disorder camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP). A major featur...

متن کامل

WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis

OBJECTIVE Both excessive and insufficient activation of WNT signalling results in cartilage breakdown and osteoarthritis. WNT16 is upregulated in the articular cartilage following injury and in osteoarthritis. Here, we investigate the function of WNT16 in osteoarthritis and the downstream molecular mechanisms. METHODS Osteoarthritis was induced by destabilisation of the medial meniscus in wil...

متن کامل

Friction-Induced Mitochondrial Dysregulation Contributes to Joint Deterioration in Prg4 Knockout Mice

Deficiency of PRG4 (lubricin), the boundary lubricant in mammalian joints, contributes to increased joint friction accompanied by superficial and upper intermediate zone chondrocyte caspase-3 activation, as shown in lubricin-null (Prg4-/-) mice. Caspase-3 activity appears to be reversible upon the restitution of Prg4 either endogenously in vivo, in a gene trap mouse, or as an applied lubricant ...

متن کامل

Lubricin Protects the Temporomandibular Joint Surfaces from Degeneration

The temporomandibular joint (TMJ) is a specialized synovial joint essential for the mobility and function of the mammalian jaw. The TMJ is composed of the mandibular condyle, the glenoid fossa of the temporal bone, and a fibrocartilagenous disc interposed between these bones. A fibrous capsule, lined on the luminal surface by the synovial membrane, links these bones and retains synovial fluid w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016